Mental Maths Calculation Policy: Division

The rationale for the Mental Maths Calculation Policy is to help provide teachers and children with a variety of strategies to tackle arithmetic questions without being overly reliant on formal written methods. The aim of this document is to help children becoming fluent, flexible and accurate in their mental calculation and help them to draw on their knowledge of known facts. Below is a grid for all four categories of calculation, the potential strategies that can be applied and in which year groups you could use these strategies. This policy should be used in conjunction with the written methods calculation policy. This policy was inspired by the book Number Talks: Whole Number Computation by Shelly Parrish.

Category	Strategy	Year I	Year 2	Year 3	Year 4	Year 5	Year 6
Division	Repeated subtraction or sharing/ dealing out	✓	√	✓			
	Proportional reasoning		✓	✓	✓	✓	✓
	Multiplying up				√	✓	✓
	Partial Quotients				✓	✓	✓

Mental Maths Calculation Policy: Division

Strategy and method	Recorded Strategy Representation (and practical		Pictorial	Abstract	
		strategy) Concrete			
Repeated Subtraction or	30 ÷ 5	Martha has 8 cookies she shares	Martha has 30 cookies that she	Looking at the pictorial	
Sharing/Dealing Out.	30 - 5 = 25	between 2 children.	shares between 5 friends. How	problem	
Repeated subtraction maybe	25 - 5 = 20	8 ÷ 2 = 4	many cookies will each friend receive?	First dealing out of 2	
used when first starting to divide. It is one of the least	20 - 5 = 15		222 222 222 222	cookies per person: 5 x 2 = 10	
efficient methods especially	15- 5= 10		Numbers could be replaced by	Second dealing out:	
as sizes of numbers in-	10-5=5		dots.	5 x 2 = 10	
crease.	5- 5 = 0	The child picks two faces to rep-	2 + 2 + 2 = 6	Third Dealing out:	
	There were six groups of 5.	resent two children and shares out the 8 counters/multilink cubes	Teacher can scaffold a child's	5 x 2 = 10	
		to represent cookies.	understanding of dealing out/	So 5 x 6 = 30 and	
			repeated subtraction using	30 ÷ 5 = 6	
Proportional Reasoning	12 ÷ 4	Multilink cubes can be used to sup-		384 ÷ 16	
This is where you can di-	Children can apply their	port here in a similar way to the		384 ÷ 16	
vide the dividend and	knowledge of common factors	sharing/dealing out method.	*****	÷2 ÷2	
divisor by the same amount	that both the dividend (12) and	12/4	20 ÷ 4	192 ÷ 8	
to create a simpler problem.	the divisor (4). Both numbers			÷2 ÷2	
If the dividend and divisor	have a common factor of 2.			96 ÷ 4	
share common factors, then	So this can be simplified	This becomes:		÷2 ÷2	
the problem can be	12 ÷ 4	$\frac{12}{4} = \frac{6}{2}$		48 ÷ 2 = 24	
simplified.			Becomes. 10 ÷ 2 = 5	So 24 is the answer to all the	
	÷2 ÷2		This can be solved through sharing or	above equations including 384 ÷ 16= 24	
	6 ÷ 2 = 3		grouping		

Mental Maths Calculation Policy: Division

Strategy and method	Recorded Strategy	Representation (and practical strategy) Concrete	Pictorial Abstract
Multiplying Up Similar to the Adding Up strategy in Subtraction. Children can access division by building on their strengths with multiplication.	384 ÷ 16 10 x 16 = 160 10 x 16 = 160 (320) 2 x 16 = 32 (352) 2 x 16 = 32 (384)	Would not recommend children using this strategy if still reliant on concrete apparatus or arrays.	This method can be used in conjunction with the Bar model. 10 10 2 2 16 x 10= 16 x 10= 16 x 2 16 x 2 160 160 = 32 = 32 160 + 160 = 320 320 + 32 = 352 352 + 32 = 384
Partial Quotients This strategy maintains place value and mathematically correct information. Children can work their way to the quotient by using friendly mul- tipliers such as tens, fives and twos.	this strategy if still reliant on concrete apparatus or arrays. 224-160 = 64 (10) formation. Children this strategy if still reliant on concrete apparatus or arrays. $64-32=32(2)$ using friendly mul- as tens, fives and $10+10+2+2=24$		Would not recommend children using this strategy if still reliant on concrete apparatus or arrays. This method can become more efficient when the child uses larger multipliers. $384 \div 16$ $384 - 320 = 64 (20)$ $64 - 64 = 0 (4)$ $20 + 4 = 24$